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LETTER TO THE EDITOR 
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trajectories 
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Institute for Solid State Physics, University of Tokyo, Roppongi, Minato.ku, Tokyo 106. Japan 

Received 19 November 1993 

Abstract. A new approximation for mobility edge trajectories, previously proposed in analogy 
with the Bethe-Peierls approximation in magnetic systems, is analysed in detail. Mobility edge 
hajectories for several types of probability distribution of site energies on the three-dimensional 
cubic lattice are obtained. The present results agree qualitatively with those obtained by the 
finite-size scaling method. 

A large number of studies has been made on the Anderson transition [l-51. It is probably 
fair, however, to say that the critical phenomenon at the mobility edge has not yet been fully 
understood. For instance, .little is known about the upper critical dimensionality. Hence 
it is still a challenging problem to study the localization transition to clarify its critical 
dimensionalities and the universality of the critical exponents. 

It is important for study of the upper critical dimensionality to know the critical 
phenomena in high dimensions. In spin systems, it is well known that the Weiss mean- 
field approximation becomes exact in the limit of high dimensionality [6,7]. In fermionic 
systems, on the other hand, such an approximation has not yet been established. Over 
the past few years, however, considerable progress has been made on strongly conelated 
fermionic system in high dimensions [8--123. A mean-field theory for the simplified 
Hubbard model based on the analysis on the sethe lattice, which is often considered as 
an infinite dimensional lattice, has been obtained [9]. This progress suggests that, even 
in  the case of the localization transition; critical phenomena in the Bethe lattice may be 
related, in some ways, to those in the regular lattice in high dimensions. In this context, we 
have proposed a possible approximation for the mobility edge (Ec)  on the d-dimensional 
hypercubic lattice based on some exact results on the Bethe lattice 1131. It can be said that 
our approximation would correspond to the Bethe-Peierls approximation in spin systems. 
We have shown that our approximation for the mobility edge works well in the case of the 
Lorentzian probability distribution of site energies [13]. However, this result may be due to 
some specific property of the Lorentzian distribution whose second moment, for instance, is 
infinite. It is important therefore to clarify whether or not our new formula works also for 
other types of probability distribution of site energies. We have can id  out, in this paper, 
numerical calculations on the mobility edge trajectories, using our formula, for two types 
of probability distribution of site energies, namely, the Gaussian and the box distributions. 
Notice that their second moments are both finite. We have found that our approximation 
also yields qualitatively reasonable results for these two cases. 

We consider the tight-binding Anderson model defined by the Hamiltonian 

(1) 
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where C/ (Ci) is a creation (annihilation) operator of an electron at the site i. The site 
energies (Vi) are distributed independently with the distribution function P ( V ) .  In our 
previous paper [13], we show that the decay rate h~ of the Green function on the Bethe 
lattice defined by 

is given by 

with the solution Q(y) of the non-linear integral equation 

Here K is the connectivity of the Bethe lattice and G(i, j ;  E) denotes the Green function 
between the site i and the site j at energy E E R on the Bethe lattice, which is assumed 
to be sufficiently large but finite. Although our analysis in the previous paper [13] was 
reseicted to the case of the Lorentzian distribution of site energies, we expect that the 
above formula also holds for the box and the Gaussian distributions of site energies. 

Our criterion for the mobility edge (E, )  on the d-dimensional hypercubic lattice is then 
given by the condition that [13] 

AE - In  K = 0 (5) 

with K = (2d - 1). In our approximation, theherefore, the mobility edge E ,  can be obtained 
by solving the non-linear integral equation (4) with K = (2d - 1) and by evaluating the 
integral (3). Physically, the function Q(y) denotes the distribution of a Green function 
defined by a modified Hamiltonian on the Bethe lattice, and hence it is a non-negative 
function 1131. For the Lorentzian distribution of site energies defined by 

1 Y  P ( V )  = -- 
H vz+ y2 

the non-linear equation (4) can be solved analytically and the condition (5) reduces to [131 

The mobility edge in this case is therefore given by an elliptic curve and, as shown in the 
previous paper [13], our result is quite consistent with that obtained by Bulka et al [13,14]. 
In the case of the Gaussian and the box distributions, on the other hand, we have to solve 
the non-linear equation (4) numerically. 

To obtain the distribution Q(y) numerically, we have adopted a Monte Carlo method. 
Let us consider the three-dimensional case where 2d - 1 = 5. First, we generate N = 59 
samples (yi; i = 1, . . . , N )  as an initial set of values of y. We carry out the following 
procedure to generate a new set [yj; i = 1 , .  . . , A']. For each i (i = 1 , .  . . , N ) ,  we choose 
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at random 2d - 1 = 5 values (xl(i', . . . . x!) )  ,of y from the set (yi) and also generate a 
random variable Vi according to the distribution P(V). Then we generate the new set [yi) 
using the relations 

(8) 

By repeating this procedure, we can obtain the distribution function Q(y )  and thus we can 
estimate numerically the expectation value (In lyl) = In IylQ(y) dy in the right-hand side 
of (3) for fixed energy E and the given probability distribution P(V) of site energies. Strictly 
speaking, the new samples { y i ;  i = 1, .  . . , N }  generated from the set (y i ;  i = 1, .  . . , N }  
are not completely independent. To see whether or not this fact causes systematic errors 
in our calculations, we have performed these procedures for the Lorentzian distribution of 
site energies for which the exact value of (In ly l )  has already been obtained analytically 
[13]. The above procedure is carried out up to 500 iterations and in this range we~have 
observed no systematic deviation from the exact value (figure 1). We have also checked 
for the box distribution that no systematic increase or decrease of the expectation value has 
been observed within the same number of iterations. From these results, it seems reasonable 
to suppose that the true expectation value can be correctly estimated by these procedures. 
Let us denote the distribution (y,'"': i = ~ l , .  . . , ~ N )  after m iterations by Q,(y) and the 
expectation value of In IyI for Q, by (In lyl), = xi In ly,'"'l/N. We have found that Q, 
approaches Q quite rapidly. After 30 or 40 iterations, the distribution Qm can be regarded 
to have already converged on the steady solution Q. We have thus used the expectation 
values {(In Iyl),; m = 60, ~. . . , 120) to estimate the true expectation value (In l y l ) .  From the 
condition (3, the mobility edges for the Gaussian and the box distributions are then obtained 
as shown in figure 2 and figure 3, respectively. The Gaussian and the box distributions we 
have used are given by 

and 

1 
WB 

pB(v) = -@(WB/z- (10) 

respectively. The second moments of Po and PB coincide with each other if WG = WB. 
As shown in figures 2 and 3, in the cases of the Gaussian and the box distributions we 

have extended states not only inside the unperturbed band (I El -= 61tl). but also outside the 
unperturbed band (IEI > 61tl). This is in contrast with the case of the Lorentzian "ibution 
of site energies, in which case the extended states do not exist outside the unperturbed band 
(figure 4) [13]. All these qualitative features for the mobility edge trajectories agree with 
those obtained by the finite-size scaling method [14]. The present approximation thus seems 
to work well not only for the Lorentzian distribution but also for other types of distribution 
whose second moments are finite. For the box and the Gaussian distributions, the critical 
values of the width of the distribution of site energies at the centre of the band (E = 0) are 
estimated as W;/t = 25.24 f 0.08 and WE/t = 29.64 f 0.10, respectively. These values 
are slightly larger than those obtained by other methods [14,15]. For instance, the values 
obtained by Bulka et al 1141 are W i / t  = 16.3 & 0.5 and W i l t  = 20.9 f 0.5. Numerical 
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F i g u n  1. Convergence of (In 1 ~ 1 ) ~  when the procedure is iteratively carried out in the case of the 
Lorenaian distribution of site energies with y = I and E = 2. The horizontal axis represents 
the number of iterations (m) and the exact expectation value (In [ y  I) = -0.5589932.. . is 
represented by the horizontal line. 
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Figure 2. The mobility edge trajectory obtained by 
the present approximation for the Gaussian distribution 
of site energies on the three-dimensional hypercubic 
lattice. The critical value of the width ofthe distribution 
L E = 0 is estimated as W&/t = 29.64 & 0.10. 

Figure 3. The mobility edge trajectory obtained by the 
present approximation for the box distribution of site 
energies on the Ihreedimensional hypercubic lattice. 
?he critical value of the width of the distribution at 
E = 0 is estimated as W ; / t  = 25.24 i 0.08. 

discrepancies may arise from the fact that interference effects are not taken into account in 
the present approximation and it is likely that this fact will enhance the extended states. 

We also find that in the case of the Lorentzian distribution the above discrepancy between 
theresult (yJr = 4) obtained by the present approximation 1131 and that (yc / t  = 3.8h0.5) 
obtained by B u l b  et af [I41 is small compared with those in the cases of the Gaussian and 
the box distributions. This can be explained as follows. As already mentioned, the second 
moment for the Lorentzian distribution is infinite and therefore extremely high or low site 
energies will contribute more dominantly compared with the case of the other two types of 
distribution. It is then likely that in the case of the Lorentzian distribution transmissions 
and reflections at such extremely high or low site energies would become more important 
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Figure 4. The mobility edge Injectory obtained by the 
present approxim+on for lhe Lorentrian disuibutian 
of site energies on the three-dimensional hypercubic 
lahice. which is taken from [131. 
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and, as a result, interference effects become less important accordingly. This would be the 
reason why the present approximation yields also a quantitatively reasonable result for the 
Lorentzian distribution of site energies. 

In summary, we have numerically evaluated the mobility edge  trajectories for the 
Gaussian and box distributions of site energies using a new approximation, which 'was 
proposed in analogy with the Bethe-Peierls approximation in magnetic systems. Together 
with the previous result (7) for the Lorentzian distribution of site energies [13], it"is shown 
that the present approximation correctly describes the qualitative change of the mobility edge 
trajectories for these three types of probability distribution: both the re-entrant phenomena 
outside the unperturbed band for the Gaussian and box distributions and the absence of 
extended states outside the unperturbed band for the Lorentzian distribution [14-161 are 
indeed reproduced. Note that the criterion for localization in the previous work [17-191 
does not reproduce the qualitative property of the mobility edge trajectory for the Lorentzian 
distribution of site energies [18]. We argued [ 131 that the effect of closed loops is neglected 
in the present approximation since it is based on the decay rate of the Green function on 
the Bethe lattice. Usually, it is thought that interferences due to closed loops' are important 
in the Anderson transition. Hence it is rather remarkable that the present approximation for 
the mobility edge yields qualitatively reasonable results in three-dimensional systems. It is 
expected that this approximation would hold better in higher dimensions, where interference 
effects become less important. The relationship between localization itself on the Bethe 
lattice [17-221 and that in the limit of high dimensionality has already been discussed by 
several authors [22-251. Whether or not the present approximation becomes exact in high 
dimensions remains to be seen. 
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